po18书屋 > 科幻小说 > 学霸系科学家系统 > 第9章 齐次平衡法

第9章 齐次平衡法(2 / 2)

“当,n中存在负数时(不妨设其为负整数情形),我们可以假设+n≈t;0时

……

我们可以先对原方程做变换u=v(-1)将原方程化为关于v的nlpde。

这时,再利用齐次平衡方法解之。”

“下面,我用实例演算给你们看。”

【ut=(u2)??+p(u-u2)(221)

……

当c?=1时,将导致负数解,这里略去。】

“这就是阶数为负数的平衡法,有什么问题,我们之后再议。”

他看到三人欲言又止,就说道“下面我说一下阶数为分数的情形。”

“若平衡阶数,n中有分数(不妨设其为正分数情形),我们可以先做变换v=au1其中1为的最简分式的分母与n的最简分式的分母的最小公倍数,a为任意常数。

也可直接假设。

这个公式比较复杂,我直接写下来吧!”

【u(x,t)=f([+n])φ?xφ?t/φ???-[+n]+[+n]-1∑t=1f([+n]-t∑(j=1)]-tjφ(-j)xφ(n+j-1)t/φ(+n-[+n]-t))+ca(311)】

写完后,他指着白板上的公式道“其中[x]表示取x的整数部分,c0为任意常数。”

“下面我实例演示一下。”

【ut+u2ux+pu??=0

其中p,≈t;0

……

得到的精确解为

u(x,t)=±√3pk2/r(2-pk2)tanh[?k(x+2/pk2-2t)]】

他呼出一口气,道“好了,这就是我说的齐次平衡法,你们有什么需要问的吗?”

“请问较低导数的非线性项式怎么转变为较高导数的线性项的,然后又怎么让各阶的系数为零的。”宗老师问道。

“是将(223)代入(222),合并φ的各种偏导数同次齐次项,并令φ?xφ1?的系数为零,得

……

φ(x,t)所满足的方程组(229)--(2210)是有解的。”

“那怎么得到k,w的非线性代数方程组?”杨老师问道。

“令φ(x,t)=1+exp(kx+wt)代入(229)--(2210),得到关于k,w的非线性代数方程组。”

“原方程的准确孤立波解是什么?”卓越问道。

“我写出来给你看。”

【u(x,t)=-6/tanh(±√-p/3/4+p/4t)]】

接下来,三人提问了许多问题,卓越提的最多。

齐次平衡法,让他对解决nlpde的破解方法的思路又开阔了许多。

并且接下来三天时间,他都在研究齐次平衡法,不懂的就去问胡教授。

胡教授倒是也不恼,有问必答,再说他的时间很多,每天只有一节课,其余时间都在搞科研。

本来来之前卓越还想在津门逛逛的,但三天时间都用在学习上。

学习的时间总是过的很快,不知不觉三天就过去了。

三天后,他们踏上返回杭城的旅程。

这一趟来津门,卓越对新的nlpde破解方法已经想到方法了。

但还是缺点东西,可是他相信应该很快了。

飞机上!

卓越拿着纸笔,写出许多的公式,拿笔的又手臂放在扶手上,手指抵着下巴,微微皱眉看着纸沉思。

他们乘坐的是商务舱,附近坐的都是成功人士,对于卓越这位年轻帅气,认真的样子有一股独特的魅力,早就吸引空姐们的目光。

不时的有一位漂亮的空姐来询问他需要什么帮助,很是殷勤,更是偷偷的塞来纸条。

“还是年轻好啊!”一旁的杨老师和宗老师对视一眼。

卓越对于这种情况习以为常,照单全收。

“小丽,你可别看到帅哥就犯花痴。”一位年长点的空姐对这位殷勤的空姐道“女人的青春是很值钱的,咱们可不能陪穷小子玩。”

“就是,你看他穿的衣服和地摊货一样,一看就不是有钱人,能坐商务舱也肯定不是花自己的钱。”另一位空姐不屑的瞥了一眼卓越的位置。

“哎呀,你们不觉得他很帅吗,特别是认真思索的样子,简直帅呆了。”小丽要冒星星的道,一副小迷妹的样子。

两位空姐看她这样,心中无奈叹息,年长的空姐道“小丽,听姐的话,像你这么漂亮的姑娘,应该找有钱人,特别是像我们这样的职业,是吃青春饭的,更应该在二十七岁钱找有其人嫁了,不能找穷小子,不然到时候吃亏的是你。”

“知道了。”小丽满不在乎的道,心中对她们的话却是不以为然。

卓越自然不知道空姐们对他的看法,两个多小时后,他们下飞机了,将空姐塞的纸条扔掉。

还是那句话,想要学习好,远离女人。

女人只会影响我学习的速度。

最新小说: 荒野惊悚:我的身后多一个人! 天命傀相 GB当你把他抄哭了 刚入学,就成帝王机师了? 末世战宠,暴击就给万倍奖励! 让你造概念机,这B2轰炸机是什么鬼? 奶瘾 骨科徐行婴 我跟两个外国人在酒店 女婿有劲枪枪到底第三章 妈妈女儿齐上阵