若把不相同的十六个“四联体”符号,再分别加进去“+”与“∧”,即有“四联体”组合变成“五联体”组合,就组合出三十二个不相同的“五联体”符号来:
(第一组8个“五联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
十十十十十十十十
(第二组8个“五联体”画符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
十十十十十十十十
(第三组8个“五联体”画符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
∧∧∧∧∧∧∧∧
(第四组8个“五联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
∧∧∧∧∧∧∧∧
(说明:因版面有限,分四组排列32个“五联体”符号)
若把三十二个不相同的“五联体”符号,再分别加进去“+”与“∧”这两个基础符号,即有“五联体”组合变成“六联体”组合,就必然组合出六十四个不相同的“六联体”符号来,见下组合:
(第一组8个“六联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十
十十十十十十十十
十十十十十十十十
(第二组8个“六联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
∧∧∧∧∧∧∧∧
十十十十十十十十
十十十十十十十十
(第三组8个“六联体”符号)
十十十∧∧∧十∧
十十∧∧∧十∧十
十∧∧∧十十十∧
十十十十十十十十